
Proceedings of theFOSS/GRASS Users Conference 2004- Bangkok, Thailand, 12-14 September 2004

Accelerating Raster Processing with Fine and Coarse Grain

Parallelism in GRASS

Onil Nazra Persada*, Thierry Goubier*

* Curtin University of Technology, Sarawak, Malaysia onil.p / thierry.g@curtin.edu.my

1 Introduction

GIS technology is deployed across a wide range of applications, from relatively simple maps to applications
that require huge computational power such as remote sensing data storage and processing, and natural
phenomena such as fire, flooding, landslide, and pollution.

High quality modeling and data sources produce huge rasters and long processing times. Parallelizing
such applications is a well researched field, with proven and efficient methods[8]. The dataset is usually
large. As a consequence, raster processing algorithms are sensitive to memory limitations. Based on those
observations, the use of a Beowulf cluster [10] for raster processing appears convincing. Each node in a
cluster adds memory, cache, memory bandwidth, I/O bandwidth and a CPU, and communication overhead.

Fine grain parallelism and the use of massively parallel computation represent a promising solution.
The remote sensing community has very early on used the power of parallel computers to process satellite
and airborne data. But the number of cells to be processed is very high which by consequence requires an
architecture containing a high number of processors. SIMD (Single Instruction Multiple Data) machines
such as Connexion machine CM-2 and CM-200, and the MasPar machine MP-1 have been a good choice to
process this kind of applications. But those machines, expensive and too specialized, have been abandoned.

Nowadays, current microprocessors integrate Multimedia units, which reproduce on a smaller scale this
paradigm. This approach has been termed SWAR[2] (SIMD Within A Register) and allows fine grain par-
allelism on standard microprocessors. And the maturation of new computing devices such as FPGAs1 and
Reconfigurable Computing capable of efficient fine grain parallelism and tools offers another solution to fine
grain parallelism[1].

Our approach is to used a hybrid Beowulf cluster where each node contains a microprocessor and a fine
grain parallel processor. The coarse grain parallelism is implemented among nodes. The fine grain processor
will run fine grain parallel tasks with a SIMD paradigm. Current microprocessors support SIMD processing
through SWAR (SIMD Within A Register). They provide large registers that may be partitioned in smaller
fields, and instructions that operate on all fields simultaneously.

The next section presents more aspects of raster based GIS applications, followed by a discussion on
parallelizing this kind of applications. Further a beowulf cluster combined with fine grain processors will
be presented. Some experiments and results will be discussed before concluding and discussing some future
aspects of this work.

2 Raster Based GIS applications

Currently two data formats, vector and raster, are widely used in GIS applications. Vector based GIS appli-
cations manage irregular and complex spatial data, while in raster based applications, data are more regular.
To limit our scope of work, this paper focuses only on raster spatial data.

1Field Programmable Gate Arrays

2 Accelerating Raster Processing with Fine and Coarse Grain Parallelism in GRASS

Raster processing algorithms use a regular dataset, a two-dimensional grid (that may be extended to three
or more dimensions). Two types of raster processing express that regularity: map algebra (r.mapcalc) and
cellular automata (CA) [11]. In map algebra, an expression will be applied to each cell of the input raster(s)
to produce an output raster. In CA models, each cell of the raster is associated with a simple automaton,
using it’s current state and it’s neighbors’ states to update itself at each generation. CA have been used to
model certain natural phenomena, such as forest fire, landslide, and sandpile [5, 7].

Remote sensing data falls into this raster category. The resolution of a raster depends on the real size
on the ground represented by a pixel; the smaller the area, the higher the resolution is. High resolution data
represents a huge number of pixels. By consequence, remote sensing generates huge amounts of data; a
single band from an earth observation satellite can generate over 60MBytes per image, and this amount is
bound to increase with each new satellite generation by the resolution of the data2 and in the number of
bands3. Raster data follows the same pattern, where the size is defined by the extent of the geographical
region and the resolution of the data. Applications targeting large areas or long period of time will use
low-resolution satellite data (500m or 1km on the ground).

Consequently raster algorithms are I/O intensive, Memory intensive and Computation intensive.
I/O intensive applications pose particular challenges. Storage speed has not increased at the same rate

as memory speed has, making it more and more a challenge to extract high performance from files. Com-
pression can lower the number of I/O operations by reducing the size of the file, at the expense of the
compression/decompression computation in itself. Parallel I/O, or spreading the data over multiple storage
units, is also a solution when the data distribution is done right.

Memory intensive applications require large amounts of fast memory to perform well. Two bottlenecks
exist: first, current processors are far faster than main memory is4 and mat be stalled waiting for data from
memory. Caches are used to alleviate this, but they are small compared to a raster. Second, the dataset
has to fit into main memory. If not, then only the part of the dataset in main memory can be processed;
the remain has to be loaded out of disk, incurring I/O operations.Out of memoryalgorithms are designed
to make this as efficient as possible. If multiple iterations over the dataset are necessary, this approach
is very difficult to implement efficiently. Some programming techniques may be used to reduce memory
requirements and avoid out-of-memory algorithms such as in memory compression or packing. If a dataset
fits into main memory, the performance may be dictated by the speed of the memory (which is one or two
orders of magnitude slower than current CPUs).

Computation intensive applications are rather well taken care of by current microprocessors, which im-
plement a large palette of techniques for accelerating processing: super-scalar, deep pipelining, multimedia
processing units, high frequencies, large and fast caches. However, the current high performance model is
best suited to a large number of iterations over a small data set; they are far less efficient when dealing with
few iterations over a large data set. The ability to compress raster data by packing it (i.e. packing multiple
cells in one register) is important.

It remains to be seen how the software of a GIS can be designed to accommodate those requirements.
We will touch this subject in part in our experiments.

3 Parallelizing Raster Based GIS

Based on the I/O, memory and computation power needed for raster based applications, the use of a Beowulf
cluster for raster processing appears convincing. Each node in a cluster adds memory, cache, memory
bandwidth, I/O bandwidth and a CPU, and communication overhead.

Parallelism can be done using a coarse grain approach, where each processor execute a relatively big part
of a program. This way, the dataset is decomposed into parts and one processor will execute each part. With
further decomposition, a part could be as small as a cell and the operations on one cell can be done by one
processor. This leads to fine grain parallelism.

Some interesting properties can be seen from the operations needed for each point on GIS rasters justify
the use of fine grain parallelism:

2current resolutions varies from 30m to 1m in commercially available data
3From multi-spectral (7 bands) to hyper-spectral(128 bands and more)
4accessing main memory may cost in excess of 200 processor cycles

Onil Nazra Persada, Thierry Goubier 3

Regularity : some processing steps will apply the same operation on all cells of a raster (regularity),
whereas others will apply different operations on different cells (irregular).

Iterative : some algorithms will apply the same operation (or sequence of operations) to the raster multiple
times. The number of iterations may be fixed in advance, or depend on the processing results (i.e.
based on the convergence of the results).

Cost : the operation needed for each cell could be inexpensive or costly in terms of computation.

Variables : an operation may need a number of inputs and outputs; the types of the inputs will determine
the width of the input in bits, and the number and the types of the outputs will define the width of the
output. The result of the execution of an operation can be an intermediate result or the final result.

Stochastic : the operation may need some random values, or a random element can be added to the data.
Under some constraints, stochastic operations can be transformed to deterministic ones with additional
inputs.

Neighbouring : the operation may require data from neighbouring cells; CAs will usually consider either 4
neighbours or 8 neighbours.

Result : the result of the operation done on a raster, can be a raster or other kind of data such as statistic,
raster to vector conversion.

3.1 Hybrid Beowulf Cluster

The particularity of our Beowulf cluster is that each node is hybrid, containing a microprocessor and a fine
grain processor as shown in Figure 1. A fine grain processor will run fine grain parallel tasks. It could
be a reconfigurable computing platform using FPGA or other kinds of processors such as the multimedia
extension of a microprocessor (MMX) and graphic cards.

Figure 1: Hybrid Beowulf Cluster

The coarse grain parallelism is implemented among nodes. In the experiment, the hybrid Beowulf cluster
is composed of 4 nodes, each node including a MMX functional unit used as a fine grain processor (Intel
Pentium III with MMX/SSE extensions). The fine grain parallelism is obtained by implementing the core
processing loop in SwarC[2]. The SwarC code is compiled to MMX assembler instruction with Scc, allowing
parallel execution in the MMX unit.

The application studied is a cellular automaton to model hydrology rain run-off. The data is loaded from
a GRASS database. The coarse grain parallelism on each node is obtained by partitioning the raster data map

4 Accelerating Raster Processing with Fine and Coarse Grain Parallelism in GRASS

in four strips. The cluster uses MPI (Message Passing Interface) to exchange the data between computing
nodes and to time the processing.

3.2 SWAR

Raster data exhibit relevant characteristics for SIMD processing. Operations are often regular, require a
limited neighbourhood, have few variables, have a narrow bit width (i.e. 8 bits for remote sensing; classified
rasters such as land-cover may have 10 categories or less, requiring 4bits). They may be iterative (CA) or
not (map algebra), and usually produce a raster as output. It is efficient and easy to map such operations
on a SIMD architecture. Accordingly, mapping those operations to a microprocessor using SWAR is also
efficient.

General purpose programming languages are unable to express SIMD operations. A common approach
for commercial software is to hand-code the relevant parts of processing in MMX or SSE assembler instruc-
tions. Such hand-coded routines may also be found in high-performance math libraries. Another approach
is to use a specific compiler and language to express those operations. Scc[2], the SWAR C Compiler from
the University of Purdue, is one of them. It uses a form of C parallel, or a C like syntax with SIMD op-
erators. It allows the expression of the operation in a common way, but generates SIMD code for standard
microprocessors that may be integrated in a C program.

SWARC is a data parallel language with a C-like syntax. An operator such as = applied to an array is
actually applied to all elements of the array, one by one or in one packed MMX instruction. Scc will compile
the SWARC source code to an intermediate form of C and MMX assembler macros before calling to gcc
for the remaining steps. This sample code illustrate the techniques used when dealing with SWAR: the data
size is reduced as much as possible (going from 32bits int to 16bits) to allow Scc to pack more operations in
one register. This allow us to pack 4 cells in 64bits (MMX; different extensions may use 128 bits registers),
improving the efficiency of the code.

The peak performance of the multimedia unit of a microprocessor is highly implementation dependent,
but we may estimate it in comparison with normal instructions under some hypothesis. We consider that the
CPU can emit MMX or normal instructions on a one to one basis; that the latency is the same, and given that
the register size is larger in MMX, the gain is then equivalent to the number of units that may be packed into
a MMX register. But we have to be aware of the limitations.

• Packing the data into registers can prove complex and inefficient. The current processing chain in
GRASS is loading a raster compressed from a file, extract it as an array of 32bits integers, and then
pack it into a 8bits integer array before being processed by the SWAR code.

• SWAR allows to accelerate processing, but the microprocessor may already be limited by its memory
interface. The gain of a SWAR solution may then be negligible. However, this may be used in a
parallel system by using a smaller, cooler processor, we can increase the density of computation units.

• To really benefit from the gain of small bit widths in raster operations, it is necessary to compile
dynamically the code. Dynamic compilation is still an area under development.

• Available tools are limited. Scc, the SWARC compiler, has not integrated SSE and SSE2 support;
tools for reconfigurable computing are even farther away from production work.

4 Experiments

4.1 Rain Water Run-off simulation

The target problem we intend to solve is a cellular automaton simulating the flow of rain water fall-off on a
landscape [4]. It takes a digital elevation model or Dem and a raster of initial water levels, and iterates. Each
iteration computes a simple flow transfer equation between cells based on their height, that is elevation plus
water level in the cell. It’s a Von Neumann neighbourhood with four neighbours (north, south, east, west).

The simulation has the following characteristics:

Onil Nazra Persada, Thierry Goubier 5

• An elevation map contains constant data and each cell consists of one elevation value.

• Each cell has an initial value of water level. This value is set to the same default for simplicity.

• The water level of a cell changes each discrete time step according to the following rules :

– If the height of the cell is greater than the elevation plus the water level of a neighbouring cell, a
portion of its water is drained into this neighbour.

∗ If the elevation of the cell is bigger than the height of this neighbour, a part of the cell’s
water level will be drained into the neighbour, otherwise a part of the difference between
the heights of the two cells will be drained into the neighbour.

– If the height of the cell is less than the elevation plus the water level of a neighbouring cell, a
portion of the water of the neighbour is drained into the cell.

∗ If the elevation of the neighbouring cell is greater than the height of the cell, a part of the
neighbouring cell’s water level will be drained into the neighbour, otherwise a part of the
difference between the heights of the two cells will be drained into the cell.

4.2 Parallelizing methods

The elevation map is decomposed into parts in strip and each processor works on its part. To calculate
the state of the cells in the border of each part, the state of the neighbouring cells from the other parts are
needed. The exchange of the states of these bordered cells is done by calls to the MPI library [6]. This
implementation is similar to [9].

4.3 SWAR

For our SWAR experiments, we use the MPI timing functions to measure the processing time and the com-
munication time.

This implements, on a single node, the cellular automaton defined in the previous section. The C code
process the raster data with a moving window of 3 rows and 4 columns. The SWARC code is given the
window and effectively computes the 2 middle cells. The results are shown in table 1.

vo id c _ c a l c (i n t : 1 6 [8] midd leElev ,

i n t : 1 6 [8] upElev ,

i n t : 1 6 [8] downElev ,

i n t : 1 6 [8] middleWater ,

i n t : 1 6 [8] upWater ,

i n t : 1 6 [8] downWater ,

i n t : 1 6 [8] newWater)

{

i n t : 1 6 [8] tmp ;

i n t : 1 6 [8] h ;

i n t : 1 6 [8] min ;

i n t : 1 6 [8] max ;

tmp = midd leWater ;

/∗ For up ∗ /

min = − (midd leWater > > 2) ;

max = upWater > > 2 ;

h = (upElev − midd leE lev) ∗ 2 5 + ((upWater− middleWater) > > 2) ;

tmp + = h > max ? max : (h < min ? min : h) ;

/∗ For down , l e f t and r i g h t . . . ∗ /

/∗ S h i f t t o a l i g n ∗ /

newWater = tmp [> >1] ;

}

6 Accelerating Raster Processing with Fine and Coarse Grain Parallelism in GRASS

4.4 Results

Three implementations are compared. The first one uses integers (C int). The second one uses floating
point (C float). The third one uses Scc and code for 16bits integers (C short int). The dataset used is
the Spearfish dataset on a GRASS 5.0.3 installation. The program is compiled with MPICH and the grass
dynamic libraries.

The processing time is computed, excluding the time spend synchronizing and exchanging data between
nodes. The time needed to exchange and synchronize is recorded in table 2. There is no load balancing
between the nodes, the calculations being regularly distributed over the raster.

Number of Nodes int float SWAR

1 32.09 25.02 7.49

2 17.20 13.41 3.75

4 8.90 6.95 1.87

Table 1: Run times of the CA in seconds

Number of Nodes int float SWAR

1 0 0 0

2 0.63 1.45 0.07

4 1.52 2.06 0.23

Table 2: Communication times in seconds

The result of the cellular automaton after 100 generations is shown in figure 2.

4.5 Analysis

In this experiment, the communication cost can be further reduced by overlapping computation and exchange
of the borders between the stripes. As long as the time needed to exchange the borders is smaller than the
computation time for one stripe on each processor, then the communication cost can be negliged.

For GRASS practitioners, the question is whether a parallel version of main raster algorithms is worth.
This depends on the efficiency of the parallel code, the ease of setup and the cost benefits of multiple
nodes. Originally, beowulf clusters were developed as a low-cost alternative to high performance scientific
workstations. Our results shows that a small scale cluster can provide a linear speedup; the Scc compiler is
also portable to alternative platforms (MacOS X with Altivec, SPARC, MIPS and PA-RISC).

5 Conclusion and Future works

As a conclusion to these results, we can say that SWAR is an effective way of increasing the performance
of raster programs by using fine grain parallelism. SWARC and Scc allow a programmer a simple, yet
effective way to benefit from the added performance. In combination with coarse grain parallelism, they
offer substantial speedup on raster operations.

Parallel I/O or compression techniques can be used if the volume of data to be processed is important.
Acknowledging the limitations and results shown here, we have to improve the efficiency of the SWAR

code generation, particularly its support for recent microprocessors as well as providing a more general
framework for exploiting fine grain parallelism in a raster-based GIS.

Onil Nazra Persada, Thierry Goubier 7

References

[1] Mike Estlick, Miriam Leeser, James Theiler, and John J. Szymanski. Algorithmic transformations in the
implementation of k- means clustering on reconfigurable hardware. InNinth international symposium
on Field programmable gate arrays, pages 103–110. ACM Press, 2001.

[2] Randall J. Fisher and Henry G. Dietz. Compiling for SIMD within a register. InLanguages and
Compilers for Parallel Computing, pages 290–304, 1998.

[3] Loic Lagadec and Bernard Pottier. A lut based high level synthesis framework for reconfigurable
architectures. In11th IEEE/ACM International Workshop on Logic & Synthesis, pages 167–172, June
2002.

[4] Shapiro M. and Westervelt J. R.mapcalc: An algebra for gis and image processing. Technical report,
US Army Construction Engineering Research Laboratory, USA, 1992.

[5] Bruce D Malamud and Donald L. Turcotte. Cellular-automata models applied to natural hazards.
Computing in Science and Engineering, pages 42–51, May/June 2000.

[6] MPI: A Message-Passing Interface Standard, 1995.

[7] Goncalves P.P. and Diogo P.M. Geographic information systems and cellular automata: A new ap-
proach to forest fire simulation. InEGIS, 1994.

[8] Healey R., Dowers S., Gittings B., and Mineter M.Parallel Processing Algorithms for GIS. Taylor &
Francis, London, 1998.

[9] William Emmanuel S. Yu Rafael P. Saldana, Winfer C. Tabares. Parallel implementation of cellular au-
tomata algorithms on the agila high performance computing system. InProceeding of the International
Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’02), 2002.

[10] D. Ridge, D. Becker, P. Merkey, and T. Sterling. Beowulf: Harnessing the power of parallelism in a
pile-of-pcs. InProceedings, IEEE Aerospace., 1997.

Figure 2: Result of the CA

8 Accelerating Raster Processing with Fine and Coarse Grain Parallelism in GRASS

[11] S. Wolfram. Computation theory of cellular automata.Communication in Mathematical Physics,
96:15–57, November 1984.

